

# **KODAK** SD Express microSD Card Specification

Version 1.0

KODAK may make changes to specifications and product description at any time without notice. KODAK and the KODAK logo are trademarks of KODAK Electronics Corporation, registered in the United States and other countries. Products and specifications discussed herein are for reference purposes only. Copies of documents which include information of part number or ordering number, or other materials may be obtained by emailing us at

# **REVISION HISTORY**

| Revision | History        | Draft Date | Remark    |
|----------|----------------|------------|-----------|
| V1.0     | First release. | 2024/11/09 | Henry Sun |
|          |                |            |           |
|          |                |            |           |

# **PRODUCT OVERVIEW**

- Flash Type
  - KIC BICS5 512Gb
- Bus Speed Mode
  - PCIe/NVMe Gen3 x1
  - UHS-I
- Power Consumption Note
- UHS-I Mode
  - Power Up Current ≤ 250uA
  - Standby Current ≤ 1000uA
  - − Read Current ≤ 400mA
  - Write Current ≤ 400mA
- SD Express Mode
  - − Read Current ≤ 400mA
  - Write Current ≤400mA

- CPRM Optional (Content Protection for Recordable Media)
- Advanced Flash Management
  - Static and Dynamic Wear Leveling
  - Bad Block Management
- Write Protect with mechanical switch
- Supply Voltage
  - VDD1: 2.7 ~ 3.6V
  - VDD2: 1.7 ~ 1.95 V
- Temperature Range
  - Operation: -25°C ~ 85°C (Tc 95C)
  - Storage: -40°C ~ 85°C
- RoHS compliant
- EMI compliant
- ESD compliant

**NOTE:** Please see Chapter 6.1 Power Consumption for details.

# PERFORMANCE

| Conocity     | PCle   | UHS<br>Speed  | vsc | АРР   | Controller |         | Flash   |                      | Crystal        | ormance<br>DiskMark<br>urst mode) | Perfor<br>CrystalD<br>PCle <sup>1</sup> (Susta | iskMark         |
|--------------|--------|---------------|-----|-------|------------|---------|---------|----------------------|----------------|-----------------------------------|------------------------------------------------|-----------------|
| Capacity PCI | rcie   | Grade         | VSC | Class | Controller | Density | Process | Bit-<br>per-<br>cell | Read<br>(MB/s) | Write<br>(MB/s)                   | Read<br>(MB/s)                                 | Write<br>(MB/s) |
| 128GB        | Gen3x1 | UHS104-<br>U3 | V30 | A1    | 5017       | 512Gbx2 | BICS5   | TLC                  | 810            | 500                               | 650                                            | 60              |
| 256GB        | Gen3x1 | UHS104-<br>U3 | V30 | A1    | 5017       | 512Gbx4 | BICS5   | TLC                  | 810            | 700                               | 650                                            | 60              |

1. The PCIe performance was measured by direct connecting mother board reader

2. The Burst mode size is the 1/8 capacity.

# **Table of Contents**

| <b>Revision Hi</b> | story                                       | 3  |
|--------------------|---------------------------------------------|----|
| 1. Introduc        | tion                                        | 10 |
| 1.1. Gene          | ral Description                             | 10 |
| 1.2. Flash         | Management                                  | 10 |
| 1.2.1.             | Error Correction Code                       |    |
| 1.2.2.             | Wear Leveling                               |    |
| 1.2.3.             | Bad Block Management                        | 11 |
| 2. Product         | Specifications                              |    |
| 3. ELectrica       | l Interface outlines                        | 14 |
| 3.1. Pad A         | ssignment and Descriptions                  | 14 |
| 3.2. PCIe          | Bus                                         | 15 |
| 3.3. micro         | SD Card Bus Topology                        | 15 |
| 3.4. micro         | SD Bus Mode Protocol                        | 15 |
| 3.5. SPI Bi        | us Mode Protocol                            | 20 |
| 3.6. micro         | SD card initialization                      |    |
| 4. Environn        | nental Specifications                       | 27 |
| 4.1. Envir         | onmental Conditions                         | 27 |
| 5. SD Card         | Comparison                                  | 30 |
| 6. Electrica       | I Specifications                            | 32 |
| 6.1 Powe           | r Consumption                               |    |
| 6.2 Work           | ing Rating                                  |    |
| 6.3 DC Cł          | naracteristic                               |    |
| 6.3.1              | Bus Operation Conditions for 3.3V Signaling |    |
| 6.3.2              | Bus Operation Conditions for PCIe           |    |
| 6.3.3              | Bus Signal Line Load                        |    |
| 6.3.4              | Power Up Time of UHS-I Host                 |    |
| 6.3.5              | Power Up Time of UHS-I Card                 |    |
| 6.3.6              | Power Up Sequence of SD Express Host        |    |
| 6.3.7              | Power Up Sequence of SD Express Card        |    |
| 6.4 AC Ch          | aracteristic                                |    |

| 6.4.1    | microSD Interface Timing (Default)                         | 38 |
|----------|------------------------------------------------------------|----|
| 6.4.2    | microSD Interface Timing (High-Speed Mode)                 |    |
| 6.4.3    | SD Interface Timing (SDR12, SDR25, SDR50 and SDR104 Modes) | 40 |
| 6.4.4    | SD Interface Timing (DDR50 Mode)                           | 42 |
| 7 Host S | System Design Guildelines                                  | 44 |
| 7.1      | Efficient Data Writing to microSD Memory Card              | 44 |
| 7.1.1    | Write_Single_Block and Write_Multiple_Block                | 44 |
| 7.2      | Basic Process of Error Handling                            | 45 |
| 7.2.1    | Retry Process                                              | 45 |
| 7.2.2    | Recovery Process                                           | 45 |
| 7.2.3    | Tuning Write Command Process                               | 45 |
| 7.2.4    | Tuning Read Command Process                                | 45 |
| 7.2.5    | Exception Handling Process                                 | 45 |
| 7.3      | Common Error Handling in SPI and SD mode                   | 45 |
| 7.3.1    | Time-out                                                   | 45 |
| 7.3.2    | Error Detect (CMD CRC Error)                               | 45 |
| 7.3.3    | Error Detect (Other Error) in SPI and SD mode              | 45 |
| 7.3.4    | Others                                                     | 46 |
| 7.4      | Data Error Handling in SPI and SD mode                     | 46 |
| 7.4.1    | Time-out                                                   | 46 |
| 7.4.2    | Read CRC16 Error                                           | 46 |
| 7.4.3    | Write CRC Status Error                                     | 46 |
| 7.4.4    | Others                                                     | 46 |
| 7.5      | Multiple Block Write (CMD25) Process                       | 47 |
| 7.6      | Retry Error handling                                       | 48 |
| 7.7      | Recovery Error Handling                                    | 49 |
| 7.8      | Tuning Write Command Error Handling                        | 50 |
| 7.9      | Exception Error Handling                                   | 51 |
| 7.10     | Multiple Blocks Read (CMD18) Error Handling Process        | 52 |
| 7.11     | Tuning Read Data Error Handling                            | 53 |
| 7.12     | AC Coupling Capacitors Placement of Host side              | 54 |
| 8 Regist | ers                                                        | 55 |
| 8.1      | Card Registers                                             | 55 |
| 8.2      | SD to NVMe Identification Registers                        | 55 |
| 9 Physic | cal Dimension                                              | 56 |
|          |                                                            | 7  |

| 10 | PRODUCT WARRANTY POLICY | . 61 |
|----|-------------------------|------|
|----|-------------------------|------|

#### List of Tables

| Table 3-1 1-Lane microSD Express Interface Card Pad Assignment     | 14 |
|--------------------------------------------------------------------|----|
| Table 5-1 Comparing SDSC, SDHC, and SDXC                           | 30 |
| Table 5-2 Comparing UHS Speed Grade Symbols                        | 30 |
| Table 5-3 Comparing Video Speed Class Symbols                      | 31 |
| Table 6-1 Power Consumption of microSD card (UHS-I Mode)           | 32 |
| Table 6-2 Power Consumption of microSD Express (PCIe Gen3x1)       | 32 |
| Table 6-3 Threshold Level for High Voltage Range                   | 33 |
| Table 6-4 Peak Voltage and Leakage Current                         | 33 |
| Table 6-5 Threshold Level for Low Voltage Range                    | 34 |
| Table 6-6 Input Leakage Current for Low Voltage Range              | 34 |
| Table 6-7 Bus Operation Conditions of VDD3                         | 34 |
| Table 6-8 Clock Signal Timing                                      | 40 |
| Table 6-9 Output Timing of Fixed Data Window (SDR12, SDR25, SDR50) | 41 |
| Table 6-10 Output Timing of Variable Window (SDR104)               | 42 |
| Table 6-11 Bus Timings – Parameters Values (DDR50 Mode)            | 43 |

# **1.** INTRODUCTION

#### 1.1. General Description

The microSD Express card is fully compliant with the standards released by the SD Card Association. The Command List supports the latest SDA Physical Layer Specification definitions. Card capacities of the nonsecure area and secure area (if needed) support [Part 3 Security Specification Ver7.0] Specifications.

The microSD Express card comes with a 17-pin interface, designed to operate at PCle Interface with a maximum throughput (logical/ideal performance) to 985MB/s (Gen3x1Lane). It can alternate communication protocol between the SD Express mode, SD mode and SPI mode. Backward compatible with UHS-I hosts. It performs data error detection and correction with reasonable power consumption and supports the latest process NAND Flash.

microSD Express card is the first memory card that implements PCIe/NVMe interface and protocol. It is the most slim SSD like storage device with more than 985MB/s speed and. It is designed for those applications that need extreme high performance (ex: burst mode photo shooting, 8K 10K video recording, AR/VR...etc.).We can expect more and more hosts and card readers are supporting SD Express protocol and let removable storage device with high speed transmission securely be highly possible.

#### 1.2. Flash Management

#### 1.2.1. Error Correction Code

Flash memory cells will deteriorate with use, which might generate random bit errors in the stored data. Thus, SD card applies ECC Algorithm, which can detect and correct errors during Read processes, ensuring data is read correctly, as well as protecting data from corruption.

#### 1.2.2. Wear Leveling

NAND Flash devices can only undergo a limited number of program/erase cycles, and in most cases, the flash media are not used evenly. If some area gets updated more frequently than others, the lifetime of the device would be reduced significantly. Thus, Wear Leveling technique is applied to extend the lifespan of NAND Flash by evenly distributing write and erase cycles across the media.

KODAK provides advanced Wear Leveling algorithm, which can efficiently spread out the flash usage through the whole flash media area. Moreover, by implementing both dynamic and static Wear Leveling algorithms, the life expectancy of the NAND Flash is greatly improved.

#### 1.2.3. Bad Block Management

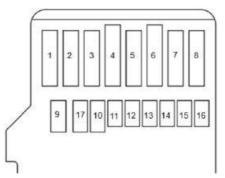
Bad blocks are blocks that include one or more invalid bits, and their reliability is not guaranteed. Blocks that are identified and marked as bad by the manufacturer are referred to as "Initial Bad Blocks". Bad blocks that are developed during the lifespan of the flash are named "Later Bad Blocks". KODAK implements an efficient bad block management algorithm to detect the factory-produced bad blocks and manages any bad blocks that appear with use. This practice further prevents data being stored into bad blocks and improves the data reliability.

# **2. PRODUCT SPECIFICATIONS**



- **Capacity:** 128GB/256GB
- MTBF:  $\geq$  3 million hours
- Bus Speed Mode using PCIe Differential Interface Lines
  - PCIe with Gen 3 x 1 Lan Up to 985MB/s
  - Gen3 x1 bus, two differential I/O(1 RX/ 1TX) of 8Gbps transfer for each direction (~1.5% overhead due to 128/120 encoding)
- Bus Speed Mode using 4 parallel data lines
  - Non-UHS Mode:
    - Default speed mode: 3.3V signaling, frequency up to 25MHz, up to 12.5 MB/sec
    - High speed mode: 3.3V signaling, frequency up to 50MHz, up to 25 MB/sec
  - UHS Mode:
    - SDR12: SDR up to 25MHz, 1.8V signaling
    - SDR25: SDR up to 50MHz, 1.8V signaling
    - SDR50: 1.8V signaling, frequency up to 100MHz, up to 50 MB/sec
    - SDR104: 1.8V signaling, frequency up to 208MHz, up to 104MB/sec
    - DDR50: 1.8V signaling, frequency up to 50MHz, sampled on both clock edges, up to 50 MB/sec
    - **NOTES:** 1. Timing in 1.8V signaling is different from that of 3.3V signaling.
      - 2. To properly run the UHS mode, please ensure the device supports UHS-I mode.
      - 3. To properly run the PCIe mode, please ensure the device supports PCIe mode.
- Copyrights Protection Mechanism: Non-CPRM
- **Support Hot Plug:** Card removal during operating will never harm the content
- Password Protection of cards (optional & SD mode only): CMD42-LOCK-UNLOCK
- Support SD SPI mode
- Designed for read intensive and write intensive cards
- Electrostatic Discharge(ESD):
  - ESD protection in pads (contact discharge).
  - ESD protection in non-contact pad area (air discharge).
- Operation voltage range:
  - VDD1: 2.7V~3.6V, VDD2: 1.70V~1.95V

#### • Temperature Range:


- Commercial grade operation Temp. Range: -25°C~85°C (Tc 95C)
- Storage Temp. Range: -40°C~85°C
- Compliant Specifications SD Memory Card Specifications:
  - Compliant with Part 1 Physical Layer Specification Ver. 7.10
  - Compliant with Part 2 File System Specification Ver. 7.00
  - Compliant with Part 3 Security Specification Ver. 7.00
  - Standard Size SD Card Mechanical Addendum Ver. 8.00

#### • Certificate:

CE, FCC, BSMI, VCCI

# **3.** ELECTRICAL INTERFACE OUTLINES

# 3.1. Pad Assignment and Descriptions



#### Table 3-1 1-Lane microSD Express Interface Card Pad Assignment

|     |         | SD N                | Лоde                  |                | PCle | e Mode                    |  |  |
|-----|---------|---------------------|-----------------------|----------------|------|---------------------------|--|--|
| pin | Name    | Type <sup>(1)</sup> | Description           | Name           | Туре | Description               |  |  |
| 1   | DAT2    | I/O                 | Data Line             | DAT2/CLKREQ#   | I/O  | Data Line/Reference clock |  |  |
| 1   | DATZ    | 1/0                 | Data Line             | DATZ/CERREQ#   | 1/0  | request signal.           |  |  |
| 2   | CD/DAT3 | I/O                 | Card Detect/Data Line | CD/DAT3/PERST# | I/O  | Card Detect/Data          |  |  |
| 2   | CD/DATS | 1/0                 |                       | CD/DATS/PERST# | 1/0  | Line/Power Enable Reset   |  |  |
| 3   | CDM     | I/O                 | Command/Response      | CMD            | I/O  | Command/Response          |  |  |
| 4   | VDD     | S                   | Supply voltage (3.3V) | VDD1           | S    | Supply voltage (3.3V)     |  |  |
| 5   | CLK     | I                   | Clock                 | CLK            | I    | Clock                     |  |  |
| 6   | VSS     | S                   | Supply voltage ground | VSS            | S    | Supply voltage ground     |  |  |
| 7   | DAT0    | I/O                 | Data Line             | DAT0/REFCLK+   | I/O  | Data Line/PCIe Ref Clock  |  |  |
| 8   | DAT1    | I/O                 | Data Line             | DAT1/REFCLK-   | I/O  | Data Line/PCIe Ref Clock  |  |  |
| 9   | -       | -                   | Not Used              | VDD2           | S    | Supply voltage (1.8V)     |  |  |
| 10  | -       | -                   | Not Used              | VSS            | S    | Supply voltage ground     |  |  |
| 11  | -       | -                   | Not Used              | PCle TX+       | Ι    | PCIe Transmit lane        |  |  |
| 12  | -       | -                   | Not Used              | PCIe TX-       | Ι    | PCIe Transmit lane        |  |  |
| 13  | -       | -                   | Not Used              | VSS            | S    | Supply voltage ground     |  |  |
| 14  | -       | -                   | Not Used              | PCIe RX-       | 0    | PCIe Receive Lane         |  |  |
| 15  | -       | -                   | Not Used              | PCIe RX+       | 0    | PCIe Receive Lane         |  |  |
| 16  | -       | -                   | Not Used              | VSS            | S    | Supply voltage ground     |  |  |
| 17  | -       | -                   | Not Used              |                | -    | Not Used                  |  |  |

- (1) S: power supply, I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers; OD: I/O using Open Drain drivers; IDS: Input Differential Signal; ODS: Output Differential Signal
- (2) The extended DAT lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET\_BUS\_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode as well while

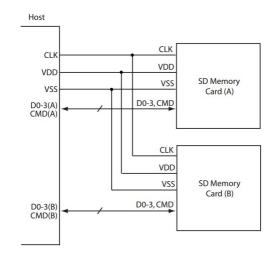
they are not used. It is defined so in order to keep compatibility to MultiMedia Cards.

- (3) At power up, this line has a 50KOhm pull up enabled in the card. This resistor serves two functions: Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select SD mode. If the host wants to select SPI mode, it should drive the line low. For Card detection, the host detects that the line is pulled high. This pull-up should be disconnected by the user during regular data transfer with SET\_CLR\_CARD\_DETECT (ACMD42) command.
- (3) Pin2 and Pin5 shall not be kept open by host in PCIe Mode.

#### 3.2. PCIe Bus

Refer to PCI Express standard defined by the PCI-SIG. The command layer used by the PCIe interface is NM Express(NVMe) and standard defined by the NVM Express.

#### 3.3. microSD Card Bus Topology


The microSD card supports 2 alternative communication protocols, SD and SPI BUS mode. Host can choose either one of both bus mode, same data can be read or written by both modes. SD mode allows 4-bits data transfer way, it provides high performance. SPI mode supports 1-bit data transfer and of course the performance is lower compared to SD mode.

#### 3.4. microSD Bus Mode Protocol

In default speed, the microSD Memory Card bus has a single master (application); multiple slaves (Cards), synchronous star topology (refer to Figure 3-2). In high speed and UHS-I, the SD Memory Card bus has a single master (application) and single slave (card), synchronous point to point topology. Clock, power and ground signals are common to all cards. Command (CMD) and data (DAT0-DAT3) signals are dedicated to each card providing continues point to point connection to all the cards.

During initialization process commands are sent to each card individually, allowing the application to detect the cards and assign logical addresses to the physical slots. Data is always sent (received) to (from) each card individually. However, in order to simply the handling of the card stack, after the initialization process, all commands may be sent concurrently to all cards. Addressing information is provided in the command packet.

SD bus allows dynamic configuration of the number of data lines. After power up, by default, the SD Memory Card will use only DATO for data transfer. After initialization the host can change the bus width (number of data active lines). This feature allows easy tradeoff between HW cost and system performance. Note that while DAT1 to DAT3 are not in use, the related Host's DAT lines should be in tri-state (input mode).



### Figure 3-2 microSD Memory Card System Bus Topology

The SD bus includes the following signals:

CLK: Host to card clock signal

**CMD:** Bidirectional Command/Response signal

DATO-DAT3: 4 Bidirectional data signals

 $V_{\text{DD}},\,V_{\text{ss1}},\,V_{\text{ss2}}\text{:}$  Power and ground signals

| Card                      | 0     | 1                    | 2             | 3            | 4              | 5     | 6                        | 7            | 8                               | 9           | 10     | 11            |
|---------------------------|-------|----------------------|---------------|--------------|----------------|-------|--------------------------|--------------|---------------------------------|-------------|--------|---------------|
| Command<br>Class<br>(CCC) | basic | Comm<br>and<br>Queue | block<br>read | reserv<br>ed | block<br>write | erase | write<br>protec-<br>tion | lock<br>card | applic<br>ation<br>specifi<br>c | I/O<br>mode | switch | extens<br>ion |
| CMD0                      | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD2                      | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD3                      | +     |                      |               |              |                |       |                          |              |                                 |             | )      |               |
| CMD4                      | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD5                      |       |                      |               |              |                |       |                          |              |                                 | +           |        |               |
| CMD6                      |       |                      |               |              |                |       |                          |              |                                 |             | +      |               |
| CMD7                      | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD8                      | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD9                      | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD10                     | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD11                     | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD12                     | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD13                     | +     |                      |               |              |                |       |                          | -            |                                 |             |        |               |
| CMD15                     | +     |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD16                     |       |                      | +             |              | +              |       |                          | +            |                                 |             |        |               |
| CMD17                     |       |                      | +             |              |                |       |                          | -            |                                 |             |        |               |
| CMD18                     |       |                      | +             |              |                |       |                          |              |                                 |             |        | <u> </u>      |
| CMD19                     |       |                      | +             |              |                |       |                          |              |                                 |             |        |               |
| CMD19<br>CMD20            |       |                      | +             | -            | +              |       |                          |              |                                 |             |        |               |
| CMD20<br>CMD21            |       |                      | -             |              | •              |       |                          |              |                                 |             |        | +             |
| CMD23                     |       |                      | +             | 0            | +              |       |                          |              |                                 |             |        | -             |
| CMD23<br>CMD24            |       |                      |               |              |                |       |                          |              |                                 |             |        |               |
| CMD24<br>CMD25            |       |                      |               |              | +              |       |                          |              |                                 |             |        |               |
|                           |       |                      |               |              | +              |       |                          |              |                                 |             |        |               |
| CMD27                     |       |                      |               |              | +              |       |                          |              |                                 |             |        |               |
| CMD28                     |       |                      |               | · · · · ·    |                |       | +                        |              |                                 |             |        |               |
| CMD29                     |       |                      |               |              |                |       | +                        |              |                                 |             |        |               |
| CMD30                     |       |                      |               |              |                |       | +                        |              |                                 |             |        |               |
| 0.4.000                   | I     |                      | ~             |              |                |       |                          |              |                                 |             |        |               |
| CMD32                     |       |                      |               |              |                | +     |                          |              |                                 |             |        |               |
| CMD33                     |       |                      |               |              |                | +     |                          |              |                                 |             |        |               |
| CMD34-37                  |       |                      |               |              |                |       |                          |              |                                 |             | +      |               |
| CMD38                     |       |                      |               |              |                | +     |                          |              |                                 |             |        |               |
| CMD40                     |       |                      |               |              |                |       |                          | +            |                                 |             |        |               |
| CMD42                     |       |                      |               |              |                |       |                          | +            |                                 |             |        |               |
| CMD43-47                  |       | +                    |               |              |                |       |                          |              |                                 |             |        |               |
| CMD48                     |       |                      |               |              |                |       |                          |              |                                 |             |        | +             |
| CMD49                     |       |                      |               |              |                |       |                          |              |                                 |             |        | +             |
| CMD50                     |       |                      |               |              |                |       |                          |              |                                 |             | +      |               |
| CMD52                     |       |                      |               |              |                |       |                          |              |                                 | +           |        |               |
| CMD53                     |       |                      |               |              |                |       |                          |              |                                 | +           |        |               |

#### Table 3-2 SD Mode Command Set

| Card<br>Command<br>Class | 0     | 1<br>Comm    | 2<br>block | 3<br>reserv | 4<br>block | 5<br>erase | 6<br>write      | 7<br>lock | 8<br>applic<br>ation | 9    | 10     | 11<br>extens |
|--------------------------|-------|--------------|------------|-------------|------------|------------|-----------------|-----------|----------------------|------|--------|--------------|
| (CCC)                    | basic | and<br>Queue | read       | ed          | write      |            | protec-<br>tion | card      | specifi<br>c         | mode | switch | ion          |
| CMD55                    |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| CMD56                    |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| CMD57                    |       |              |            |             |            |            |                 |           |                      |      | +      |              |
| CMD58                    |       |              |            |             |            |            |                 |           |                      |      |        | +            |
| CMD59                    |       |              |            |             |            |            |                 |           |                      |      |        | +            |
| ACMD6                    |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| ACMD13                   |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| ACMD14                   |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| ACMD15                   |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| ACMD16                   |       |              |            |             |            |            | <u>~</u> (      |           | +                    |      |        |              |
| ACMD22                   |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| ACMD23                   |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| ACMD28                   |       |              |            |             |            | ~          |                 |           | +                    |      |        |              |
| ACMD41                   |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| ACMD42                   |       |              |            |             |            |            |                 |           | +                    |      |        |              |
| ACMD51                   |       |              |            |             |            |            | <i>V</i>        |           | +                    |      |        |              |

| Commands | Support requirements                                                                   |
|----------|----------------------------------------------------------------------------------------|
| CMD0     | Mandatory                                                                              |
| CMD2     | Mandatory                                                                              |
| CMD3     | Mandatory                                                                              |
| CMD4     | Mandatory                                                                              |
| CMD5     | Optional                                                                               |
| CMD6     | Mandatory for cards version 1.10 and after                                             |
| CMD7     | Mandatory                                                                              |
| CMD8     | Mandatory for cards version 2.00 and after                                             |
| CMD9     | Mandatory                                                                              |
| CMD10    | Mandatory                                                                              |
| CMD11    | Mandatory for cards supporting UHS-I.<br>Optional for cards that do not support UHS-I. |
| CMD12    | Mandatory                                                                              |
| CMD13    | Mandatory                                                                              |
| CMD15    | Mandatory                                                                              |
| CMD16    | Mandatory                                                                              |
| CMD17    | Mandatory                                                                              |
| CMD18    | Mandatory                                                                              |
| CMD19    | Mandatory for cards supporting UHS-I.<br>Optional for cards that do not support UHS-I. |

| Commands       | Support requirements                                                                                                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CMD20          | Not supported for SDSC cards.<br>Mandatory for SDHC and SDXC cards that support Video Speed Class.<br>Optional for SDHC cards that support:<br>a) Speed Class; or |
|                | b) UHS Speed Grade,                                                                                                                                               |
|                | and do not support Video Speed Class.<br>Mandatory for SDXC cards that support Speed Class or UHS Speed Grade.                                                    |
| CMD21          | Optional                                                                                                                                                          |
| CMD21<br>CMD23 | Not supported for SDSC cards.                                                                                                                                     |
| 0111020        | Mandatory for SDHC and SDXC cards that support UHS104.<br>Optional for SDHC and SDXC cards that do not support UHS104.                                            |
| CMD24          | Mandatory for writable types of cards                                                                                                                             |
| CMD25          | Mandatory for writable types of cards                                                                                                                             |
| CMD27          | Mandatory for writable types of cards                                                                                                                             |
| CMD28          | Optional                                                                                                                                                          |
| CMD29          | Optional                                                                                                                                                          |
| CMD30          | Optional                                                                                                                                                          |
| CMD32          | Mandatory for writable types of cards                                                                                                                             |
| CMD33          | Mandatory for writable types of cards                                                                                                                             |
| CMD34-37       | Optional for cards version 1.10 and after                                                                                                                         |
| CMD38          | Mandatory for writable types of cards<br>Discard and FULE support is optional                                                                                     |
| CMD40          | Optional                                                                                                                                                          |
| CMD42          | Optional for cards version 1.01 and 1.10.<br>Mandatory for cards version 2.00 and after.<br>COP support is optional for CMD42                                     |
| CMD43-47       | Mandatory for cards supporting Command Queue                                                                                                                      |
| CMD48          | Optional<br>Mandatory for cards supporting Performance Enhancement functions (refer<br>to 5.8.2)                                                                  |
| CMD49          | Optional<br>Mandatory for cards supporting Performance Enhancement functions (refer<br>to 5.8.2)                                                                  |
| CMD50          | Optional for cards version 1.10 and after                                                                                                                         |
| CMD52          | Optional                                                                                                                                                          |
| CMD52          | Optional                                                                                                                                                          |
| CMD55          | Mandatory                                                                                                                                                         |
| CMD56          | Mandatory                                                                                                                                                         |
| CMD57          | Optional for cards version 1.10 and after                                                                                                                         |
| CMD58          | Optional                                                                                                                                                          |
| CMD59          | Optional                                                                                                                                                          |
| ACMD6          | Mandatory                                                                                                                                                         |
| ACMD13         | Mandatory                                                                                                                                                         |
| ACMD14         | Optional                                                                                                                                                          |
| ACMD15         | Optional                                                                                                                                                          |
| Commands       | Support requirements                                                                                                                                              |
| ACMD16         | Optional                                                                                                                                                          |
| ACMD22         | Mandatory for writable types of cards                                                                                                                             |
| ACMD23         | Mandatory for writable types of cards                                                                                                                             |
| ACMD28         | Optional                                                                                                                                                          |
| ACMD41         | Mandatory                                                                                                                                                         |
| ACMD42         | Mandatory                                                                                                                                                         |
| ACMD51         | Mandatory                                                                                                                                                         |

# 3.5. SPI Bus Mode Protocol

While the microSD Memory Card channel is based on command and data bit streams that are initiated by a start bit and terminated by a stop bit, the SPI channel by byte oriented. Every command or data block is built for 8-bit bytes and is byte aligned with the CS signal (i.e. the length is a multiple of 8 clock cycles). The card starts to count SPI bus clock cycle at the assertion of the CS signal. Every command or data token shall be aligned with 8-clock cycle boundary.

Similar to the SD Memory Card Protocol, the SPI messages consist of command, response and data-block tokens.

The advantage of SPI mode is reducing the host design effort, especially for MMC host side, it just be modified by little change. Note: please use SD card specification to implement SPI mode function, not use MMC specification. For example, SPI mode is initialized by ACMD41, and the registers are different from MMC card, especially CSD register.

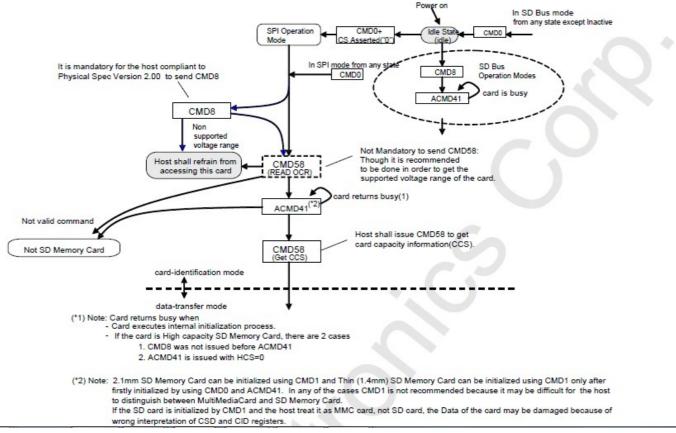


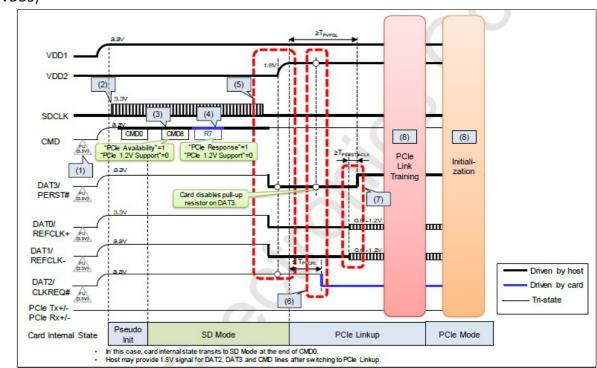

Figure 3-3 SD Memory Card State Diagram (SPI mode)

| Card Command Class<br>(CCC) |                        | 0     | 1            | 2             | 3            | 4              | 5     | 6                             | 7            | 8                                      | 9           | 10     | 11           |
|-----------------------------|------------------------|-------|--------------|---------------|--------------|----------------|-------|-------------------------------|--------------|----------------------------------------|-------------|--------|--------------|
| Supported commands          | class<br>description   | basic | reser<br>ved | block<br>read | reser<br>ved | block<br>write | erase | write<br>pro-<br>tec-<br>tion | lock<br>card | appli-<br>cat-<br>ion<br>spe-<br>cific | I/O<br>mode | switch | reser<br>ved |
| CMD0                        | Mandatory              | +     |              |               |              |                |       |                               |              |                                        |             |        |              |
| CMD1                        | Mandatory              | +     |              |               |              |                |       |                               |              |                                        |             |        |              |
| CMD5                        | Optional               |       |              |               |              |                |       |                               |              |                                        | +           |        |              |
| CMD6 <sup>2</sup>           | Mandatory              | )     |              |               |              |                |       |                               |              |                                        |             | +      |              |
| CMD83                       | Mandatory              | +     |              |               |              |                |       |                               |              |                                        |             |        |              |
| CMD9                        | Mandatory              | +     |              |               |              |                |       |                               |              |                                        |             |        |              |
| CMD10                       | Mandatory              | +     |              |               |              |                |       |                               |              |                                        |             |        |              |
| CMD12                       | Mandatory              | +     |              |               |              |                |       |                               |              |                                        |             |        |              |
| CMD13                       | Mandatory              | +     |              |               |              |                |       |                               |              |                                        |             |        |              |
| CMD16                       | Mandatory              |       |              | +             |              | +              |       |                               | +            |                                        |             |        |              |
| CMD17                       | Mandatory              |       |              | +             |              |                |       |                               |              |                                        |             |        |              |
| CMD18                       | Mandatory              |       |              | +             |              |                |       |                               |              |                                        |             |        |              |
| CMD24                       | Mandatory <sup>1</sup> |       |              |               |              | +              |       |                               |              |                                        |             |        |              |
| CMD25                       | Mandatory <sup>1</sup> |       |              |               |              | +              |       |                               |              |                                        |             |        |              |

#### Table 3-3 SPI Mode Command Set

|                       | mand Class<br>CC)      | 0                     | 1            | 2             | 3            | 4              | 5     | 6                             | 7            | 8                                      | 9           | 10     | 11           |
|-----------------------|------------------------|-----------------------|--------------|---------------|--------------|----------------|-------|-------------------------------|--------------|----------------------------------------|-------------|--------|--------------|
| Supported<br>commands | class<br>description   | basic                 | reser<br>ved | block<br>read | reser<br>ved | block<br>write | erase | write<br>pro-<br>tec-<br>tion | lock<br>card | appli-<br>cat-<br>ion<br>spe-<br>cific | I/O<br>mode | switch | reser<br>ved |
| CMD27                 | Mandatory <sup>1</sup> |                       |              |               |              | +              |       |                               |              |                                        |             |        |              |
| CMD28                 | Optional               |                       |              |               |              |                |       | +                             |              |                                        |             | 1      |              |
| CMD29                 | Optional               |                       |              |               |              |                |       | +                             |              |                                        |             |        |              |
| CMD30                 | Optional               |                       |              |               |              |                |       | +                             |              |                                        |             |        |              |
| CMD32                 | Mandatory <sup>1</sup> |                       |              |               |              |                | +     |                               |              |                                        |             |        |              |
| CMD33                 | Mandatory <sup>1</sup> |                       |              |               |              |                | +     |                               | R            |                                        |             |        |              |
| CMD34-37 <sup>2</sup> | Optional               |                       |              |               |              |                |       |                               |              |                                        |             | +      |              |
| CMD38                 | Mandatory <sup>1</sup> |                       |              |               |              |                | +     | <b>C</b>                      |              |                                        |             |        |              |
| CMD424                | (Note 4)               |                       |              |               |              |                |       |                               | +            |                                        |             |        |              |
| CMD50 <sup>2</sup>    | Optional               |                       |              |               |              |                |       | 1                             |              |                                        |             | +      |              |
| CMD52                 | Optional               |                       |              |               |              |                |       |                               |              |                                        | +           |        |              |
| CMD53                 | Optional               |                       |              |               |              |                |       | ×                             |              |                                        | +           |        |              |
| CMD55                 | Mandatory              |                       |              |               |              |                |       |                               |              | +                                      |             |        |              |
| CMD56                 | Mandatory              |                       |              |               | 0            |                |       |                               |              | +                                      |             |        |              |
| CMD57 <sup>2</sup>    | Optional               |                       |              |               |              |                |       |                               |              |                                        |             | +      |              |
| CMD58                 | Mandatory              | +                     |              |               |              |                |       |                               |              |                                        |             |        |              |
| CMD59                 | Mandatory              | +                     |              |               |              |                |       |                               |              |                                        |             |        |              |
| ACMD13                | Mandatory              |                       |              |               |              |                |       |                               |              | +                                      |             |        |              |
| ACMD22                | Mandatory <sup>1</sup> |                       |              |               |              |                |       |                               |              | +                                      |             |        |              |
| ACMD23                | Mandatory <sup>1</sup> |                       |              |               |              |                |       |                               |              | +                                      |             |        |              |
| ACMD41                | Mandatory              |                       |              |               |              |                |       |                               |              | +                                      |             |        |              |
| ACMD42                | Mandatory              |                       |              |               |              |                |       |                               |              | +                                      |             |        |              |
| ACMD51                | Mandatory              | $\mathbf{\mathbf{X}}$ |              |               |              |                |       |                               |              | +                                      |             |        |              |

Note (1): The commands related write and erase are mandatory only for the Writable types of Cards. Note (2): This command was defined in spec version 1.10


Note (3): This command is newly defined in version 2.00

Note (4): This command is optional in Version 1.01 and 1.10 and mandatory from Version 2.00. COP support is optional for CMD42

# 3.6. microSD card initialization

### PCIe mode:

There are two options for microSD Express initialization, one is starting with issuing SD commands, and the other is without issuing SD commands. KODAK microSD Express card support both types of initialization. Starting with issuing SD commands is recommended by SDA because it can detect card type properly by SD CMD8 and avoid any unexpected compatibility issues.



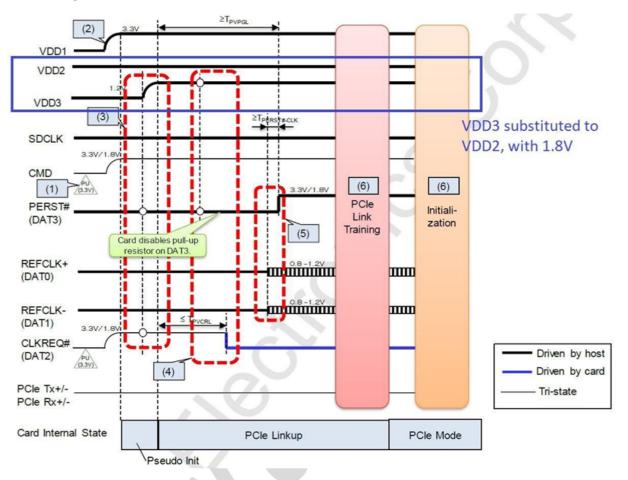

 SD initialization sequence starting by SD commands with HVS (Host and card both do not support VDD3)

Figure 3-5 Initialization Starts from SD CMD8 by HVS

- (1) Before VDD1 power supply, SD Experss Host pulls up CMD and DAT[3:0] lines by 3.3V.
- (2) After VDD1 is supplied, the Host supplies SDCLK, and issues CMD0.
- (3) The Host issues CMD8 with "PCIe Availability"=1 and "PCIe 1.2V Support"=0 in its argument, because it does not support VDD3.
- (4) SD Express Card receives the CMD8 and detects "PCIe Availability"=1 and "PCIe 1.2V Support"=0 successfully. In this case, it responds R7 with "PCIe Response"=1 and "PCIe 1.2V Support"=0. Note that even if the Card supports VDD3, it shall always respond R7 with "PCIe 1.2V Support"=0 when it receives CMD8 with "PCIe 1.2V Support"=0.
- (5) When the Host detects "PCIe Response"=1 in R7, it drives DAT3 (PERST#), DAT0 (REFCLK+) and DAT1 (REFCLK-) Low. And the Host supplies VDD2.
- (6) When the card detects VDD2 on and PERST#=Low, it disables its internal pull-up resistor on DAT3, then it drives CLKREQ# (DAT2) Low within T<sub>PVCRL</sub> from VDD2 stabilization.
  - (7) When the Host detects CLKREQ#=Low, it drives PERST# (DAT3) High after more than T<sub>PVPGL</sub> from VDD2 stabilization and more than T<sub>PERST#-CLK</sub> from supplying REFCLK via DAT0 and DAT1 lines.
  - (8) The Host executes PCIe Link Training and initialization.

#### SD initialization sequence starting by direct PCIE

When host and card does not support VDD3, host can supply VDD2 instead of VDD3 just after VDD1 is on. Meaning VDD3 is substituted to VDD2.



#### Figure 3-6 Direct PCIe Initialization

- (1) Before VDD1 power supply, SD Express Host drives SDCLK, PERST# (DAT3), REFCLK (DAT0 and DAT1) Low, and pulls up CLKREQ# (DAT2) and CMD by 3.3V.
- (2) The Host supplies VDD1.
- (3) After that, if the Host detects PERST#=Low and CLKREQ#=High, it supplies VDD3.
- (4) When the card detects VDD3 on and PERST#=Low, it disables its internal pull-up resistor on DAT3, then it drives CLKREQ# (DAT2) Low within T<sub>PVCRL</sub> from VDD3 stabilization.
- (5) When the Host detects CLKREQ#=Low, it drives PERST# (DAT3) High after more than T<sub>PVPGL</sub> from VDD3 stabilization and more than T<sub>PERST#-CLK</sub> from supplying REFCLK via DAT0 and DAT1 lines.
- (6) The Host executes PCIe Link Training and initialization.

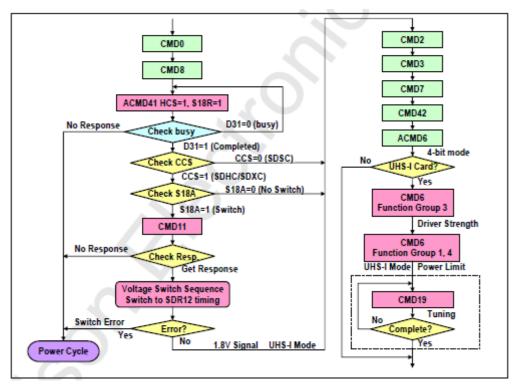



Figure 3-7 UHS-I Host Initialization Flow Chart

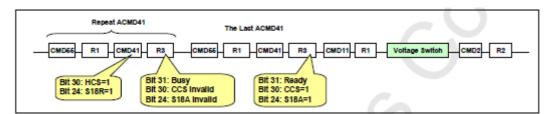



Figure 3-8 ACMD41 Timing Followed by Voltage Switch Sequence

When signaling level is 3.3V, host repeats to issue ACMD41 with HCS=1 and S18R=1 until the response indicates ready. The argument (HCS and S18R) of the first ACMD41 is effective but the all following ACMD41 should be issued with the same argument.

If Bit31 indicates ready, host needs to check CCS and S18A.

The card indicates S18A=0, which means that voltage switch is not allowed and the host needs to use current signaling level.

| Current Signaling Level | S18R                                | S18A | Comment                                  |
|-------------------------|-------------------------------------|------|------------------------------------------|
| 3.3V                    | 0 0 1.8V signaling is not requested |      | 1.8V signaling is not requested          |
|                         | 1                                   | 0    | The card does not support 1.8V signaling |
| 84                      | 1                                   | 1    | Start signal voltage switch sequence     |
| 1.8V                    | X                                   | 0    | Already switched to 1.8V                 |

#### Table 3-4 S18R and S18A Combinations

To change signaling level at the same time between host and card, signal voltage switch sequence is invoked by CMD11 as shown in Figure 3-6. CMD11 is issued only when S18A=1 in the response of ACMD41.

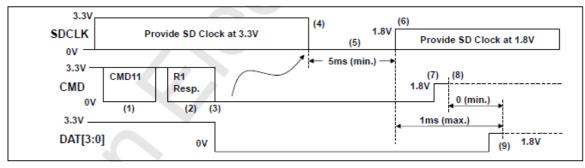



Figure 3-9 Signal Voltage Switch Sequence

# 4.1. Environmental Conditions

#### Temperature range

- Temperature Range
  - Operational: -25°C ~ 85°C (Tc 95°C)
  - Storage: -40°C ~ 85°C

#### **High Temperature Test Condition**

|                     | Temperature | Humidity | Test Time |
|---------------------|-------------|----------|-----------|
| Operation (C-grade) | 85°C        | 0% RH    | 96 hours  |
| Storage             | 85°C        | 0% RH    | 500 hours |

#### Low Temperature Test Condition

|                     | Temperature | Humidity | Test Time |
|---------------------|-------------|----------|-----------|
| Operation (C-grade) | -25°C       | 0% RH    | 96 hours  |
| Storage (C-grade)   | -40°C       | 0% RH    | 168 hours |

#### **High Humidity Test Condition**

|                     | Temperature | Humidity | Test Time |
|---------------------|-------------|----------|-----------|
| Operation (C-grade) | 25°C        | 95% RH   | 1 hours   |
| Storage (C-grade)   | 40°C        | 93% RH   | 500 hours |

#### **Temperature Cycle Test**

|                     | Temperature | Test Time | Cycle     |  |
|---------------------|-------------|-----------|-----------|--|
| Operation (Carado)  | -25°C       | 30 min    | 10 evelos |  |
| Operation (C-grade) | 85°C        | 30 min    | 10 cycles |  |
| Characa             | -40°C       | 30 min    | EQ Cueles |  |
| Storage             | 85°C        | 30 min    | 50 Cycles |  |

#### **Shock Specification**

|                  | Acceleration Force | Half Sin Pulse Duration |
|------------------|--------------------|-------------------------|
| Commercial grade | 500G               | 1ms                     |

#### **Vibration Specification**

|              | Cond                   | Vibration Orientation  |                              |
|--------------|------------------------|------------------------|------------------------------|
|              | Frequency/Displacement | Frequency/Acceleration | Vibration Orientation        |
| microSD card | 20Hz~80Hz/1.52mm       | 80Hz~2000Hz/20G        | X, Y, Z axis/30 min for each |

#### **Drop Specification**

|              | Height of Drop  | Number of Drop      |
|--------------|-----------------|---------------------|
| microSD card | 150cm free fall | 6 face of each unit |

#### **Bending Specification**

|              | Force | Action           |
|--------------|-------|------------------|
| microSD card | ≥ 10N | Hold 1min/5times |

#### **Torque Specification**

|              | Force                | Action                 |
|--------------|----------------------|------------------------|
| microSD card | 0.1N-m or +/-2.5 deg | Hold 30 seconds/5times |

#### Salt Spray Specification

|              | Condition              | Action             |
|--------------|------------------------|--------------------|
|              | Concentration: 3% NaCl |                    |
| microSD card | Temperature: 35°C      | Storage for 24 HRS |

#### Waterproof Specification

|              | Condition                                                                                                | Action              |
|--------------|----------------------------------------------------------------------------------------------------------|---------------------|
| microSD card | Water temperature: 25°C<br>Water depth: The lowest point of<br>unit is locating 1000mm below<br>surface. | Storage for 30 mins |

#### **IPX7** compliance

#### X-Ray Exposure Specification

|              | Condition                                                                                                       | Action              |
|--------------|-----------------------------------------------------------------------------------------------------------------|---------------------|
| microSD card | 0.1 Gy of medium-energy radiation (70<br>keV to 140 keV, cumulative dose per year)<br>to both sides of the card | Storage for 30 mins |

#### ISO 7816-1 compliance

#### **Durability Test**

|              | Mating cycle |
|--------------|--------------|
| microSD card | 10000 times  |

#### **Contact ESD Specification**

|              | Condition                           |  |  |
|--------------|-------------------------------------|--|--|
| microSD card | Contact: +/- 4KV each item 25 times |  |  |
|              | Air: +/- 8KV 10 times               |  |  |

#### EMI Compliance

- FCC: CFR47 Part15 Subpart B Class B
- CE: EN55032, EN55035
- BSMI: CN13438
- VCCI: CISPR 32

|                                               | SDSC                  | SDHC                                | SDXC                                |
|-----------------------------------------------|-----------------------|-------------------------------------|-------------------------------------|
| File System                                   | FAT 12/16             | FAT32                               | exFAT                               |
| Addressing Mode                               | Byte<br>(1 byte unit) | Block<br>(512 byte unit)            | Block<br>(512 byte unit)            |
| HCS/CCS bits of ACMD41                        | Support               | Support                             | Support                             |
| CMD8 (SEND_IF_COND)                           | Support               | Support                             | Support                             |
| CMD16 (SET_BLOCKLEN)                          | Support               | Support<br>(Only CMD42)             | Support<br>(Only CMD42)             |
| Partial Read                                  | Support               | Not Support                         | Not Support                         |
| Lock/Unlock Function                          | Mandatory             | Mandatory                           | Mandatory                           |
| Write Protect Groups                          | Optional              | Not Support                         | Not Support                         |
| Supply Voltage 2.7v – 3.6v<br>(for operation) | Support               | Support                             | Support                             |
| Total Bus Capacitance for each<br>signal line | 40pF                  | 40pF                                | 40pF                                |
| CSD Version<br>(CSD_STRUCTURE Value)          | 1.0 (0x0)             | 2.0 (0x1)                           | 2.0 (0x1)                           |
| Speed Class                                   | Optional              | Mandatory<br>(Class 2 / 4 / 6 / 10) | Mandatory<br>(Class 2 / 4 / 6 / 10) |

#### Table 5-1 Comparing SDSC, SDHC, and SDXC

#### Table 5-2 Comparing UHS Speed Grade Symbols

|                | U1 ( UHS Speed Grade 1)                                                                               | U3 ( UHS Speed Grade 3)             |  |
|----------------|-------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| Operable Under | *UHS-I Bus I/F, UH                                                                                    | IS-II Bus I/F                       |  |
| SD Memory Card | SDHC UHS-I and UHS-II, SDXC UHS-I and UHS-II                                                          |                                     |  |
| Mark           | 1                                                                                                     | 3                                   |  |
| Performance    | 10 MB/s minimum write speed                                                                           | 30 MB/s minimum write speed         |  |
| Applications   | Full higher potential of recording real-<br>time<br>broadcasts and capturing large-size HD<br>videos. | Capable of recording 4K2K<br>video. |  |

\*UHS (Ultra High Speed), the fastest performance category available today, defines bus-interface speeds up to 312 Megabytes per second for greater device performance. It is available on SDXC and SDHC memory cards and devices.

|                                                    | V6                         | V10                        | V30                         | V60         | V90         |
|----------------------------------------------------|----------------------------|----------------------------|-----------------------------|-------------|-------------|
| Bus Speed Mode<br>Requirement                      | Non UHS<br>UHS-I<br>UHS-II | Non UHS<br>UHS-I<br>UHS-II | Non UHS<br>UHS-I<br>UHS-II  | UHS-II      | UHS-II      |
| Card Capacity                                      |                            |                            | SDHC, SDXC                  |             |             |
| Mark                                               | <b>V</b> 6                 | VIO                        | <b>V</b> 30                 | <b>V</b> 60 | <b>V</b> 90 |
| Performance<br>(Minimum Sequential<br>Write Speed) | 6MB/s                      | 10MB/s                     | 30MB/s                      | 60MB/s      | 90MB/s      |
| Applications                                       | Standard<br>Video          | Full HD Video<br>HD Video  | 4K2K Video<br>Full HD Video | 4K2K Video  | 8K Video    |

# **6. ELECTRICAL SPECIFICATIONS**

## **6.1 Power Consumption**

The table below is the power consumption of SD card with different bus speed modes.

| Bus Speed Mode                        |              | Max. Power Up<br>Current (uA) | Max. Standby<br>Current (uA) | Max. Read<br>Current (mA) | Max. Write<br>Current (mA) |  |  |
|---------------------------------------|--------------|-------------------------------|------------------------------|---------------------------|----------------------------|--|--|
| Default Speed Mode<br>High Speed Mode |              | 250                           | 1000                         | 150 @ 3.6V                | 150 <sup>3</sup> @ 3.6V    |  |  |
|                                       |              | 250                           | 1000                         | 200 @ 3.6V                | 200 @ 3.6V                 |  |  |
|                                       | UHS50/DDR50  | 250                           | 1000                         | 400 @ 3.6V                | 400 @ 3.6V                 |  |  |
| UHS-I Mode                            | UHS104/DDR50 | 250                           | 1000                         | 400 @ 3.6V                | 400 @ 3.6V                 |  |  |

#### Table 6-1 Power Consumption of microSD card (UHS-I Mode)

#### NOTES:

- 1. Power consumptions are measured at room temperature.
- Power consumption of Max. Standby Current is for SD cards under and including 64GB only. For 128GB and 256GB, the power consumption is to be determined.
- 3. For SDXC, up to 100mA from VDD1 when XPC=0; up to 150mA from VDD1 when XPC=1.

#### Table 6-2 Power Consumption of microSD Express (PCIe Gen3x1)

|            |                   | Current Consumption Limit                    |     |              |     |
|------------|-------------------|----------------------------------------------|-----|--------------|-----|
| Power Rail | Voltage Tolerance | Voltage Tolerance Peak mA<br>Max Avg @ 100us |     | Normal mA    |     |
|            |                   |                                              |     | Max Avg @ 1s |     |
| 2 21/      |                   | VDD1                                         | 522 | VDD1         | 421 |
| 3.3V       | 2.7V – 3.6V       | VDD2                                         | 110 | VDD2         | 100 |

#### Notes:

- 1. Power consumptions are measured at room temperature.
- 2. Table 6-2 is determined by RMS value.

# 6.2 Working Rating

| Item | Symbol          | Parameter             | MIN | ΜΑΧ | Unit |
|------|-----------------|-----------------------|-----|-----|------|
| 1    | Ta              | Operating Temperature | -40 | +85 | °C   |
| 2    | T <sub>st</sub> | Storage Temperature   | -40 | +85 | °C   |

| Parameter               | Symbol          | Min | MAX | Unit |
|-------------------------|-----------------|-----|-----|------|
| Operating Temperature   | Ta              | -25 | +85 | °C   |
| V <sub>DD</sub> Voltage | V <sub>DD</sub> | 2.7 | 3.6 | V    |

# 6.3 DC Characteristic

# 6.3.1 Bus Operation Conditions

# Table 6-3 Threshold Level for High Voltage Range

| Parameter           | Symbol          | Min.                  | Max                   | Unit | Condition                      |
|---------------------|-----------------|-----------------------|-----------------------|------|--------------------------------|
| Supply Voltage      | V <sub>DD</sub> | 2.7                   | 3.6                   | V    |                                |
| Output High Voltage | V <sub>OH</sub> | 0.75*V <sub>DD</sub>  |                       | V    | $I_{OH}$ =-2mA $V_{DD}$ Min    |
| Output Low Voltage  | V <sub>OL</sub> |                       | 0.125*V <sub>DD</sub> | V    | $I_{OL}$ =2mA $V_{DD}$ Min     |
| Input High Voltage  | V <sub>IH</sub> | 0.625*V <sub>DD</sub> | V <sub>DD</sub> +0.3  | V    |                                |
| Input Low Voltage   | VIL             | V <sub>SS</sub> -0.3  | 0.25*V <sub>DD</sub>  | V    |                                |
| Power Up Time       |                 |                       | 250                   | ms   | From 0V to $V_{\text{DD}}$ min |

| Parameter                 | Symbol              | ol Min Max |                      | Unit | Remarks |  |  |  |
|---------------------------|---------------------|------------|----------------------|------|---------|--|--|--|
| Peak voltage on all lines | oltage on all lines |            | V <sub>DD</sub> +0.3 | V    |         |  |  |  |
| All Inputs                |                     |            |                      |      |         |  |  |  |
| Input Leakage Current     | -10                 | 10 uA      |                      |      |         |  |  |  |
| All Outputs               |                     |            |                      |      |         |  |  |  |
| Output Leakage Current    |                     | -10        | 10                   | uA   |         |  |  |  |

| Parameter           | Symbol            | Min.                 | Max  | Unit | Condition                    |
|---------------------|-------------------|----------------------|------|------|------------------------------|
| Supply Voltage      | V <sub>DD</sub>   | 2.7                  | 3.6  | V    |                              |
| Regulator Voltage   | V <sub>DDIO</sub> | 1.7                  | 1.95 | V    | Generated by $V_{\text{DD}}$ |
| Output High Voltage | V <sub>OH</sub>   | 1.4                  | -    | V    | I <sub>он</sub> =-2mA        |
| Output Low Voltage  | V <sub>OL</sub>   | -                    | 0.45 | V    | I <sub>oL</sub> =2mA         |
| Input High Voltage  | V <sub>IH</sub>   | 1.27                 | 2.00 | V    |                              |
| Input Low Voltage   | V <sub>IL</sub>   | V <sub>ss</sub> -0.3 | 0.58 | V    |                              |

#### Table 6-5 Threshold Level for Low Voltage Range

#### Table 6-6 Input Leakage Current for Low Voltage Range

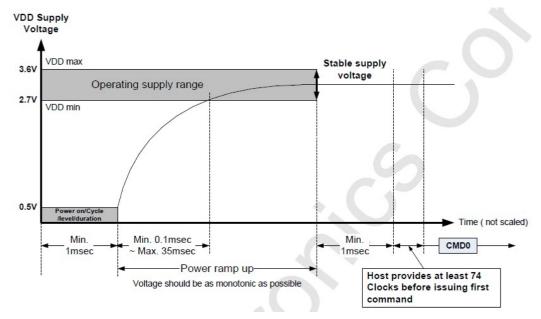
| Parameter             | Symbol | Min | Max. | Unit | Remarks         |
|-----------------------|--------|-----|------|------|-----------------|
| Input Leakage Current |        | -2  | n    |      | DAT3 pull-up is |
|                       |        | -2  | Z    | uA   | disconnected.   |

# 6.3.2 Bus Operation Conditions for PCIe

## Table 6-7 Bus Operation Conditions of VDD3

| Parameter                                    | Symbol          | Min. | Max | Unit | Condition |
|----------------------------------------------|-----------------|------|-----|------|-----------|
| Supply Voltage                               | $V_{DD2}$       | 1.14 | 1.3 | V    |           |
| Capacitance<br>connected to V <sub>DD2</sub> | C <sub>c2</sub> | -    | 2   | uF   |           |
| Host capacitance recommended for $V_{DD3}$   | C <sub>h3</sub> | 22   | -   | uF   |           |

#### 6.3.3 Bus Signal Line Load


#### **Bus Operation Conditions – Signal Line's Load**

Total Bus Capacitance = C<sub>HOST</sub> + C<sub>BUS</sub> + N C<sub>CARD</sub>

| Parameter                             | symbol                               | Min | Max      | Unit      | Remark                                    |
|---------------------------------------|--------------------------------------|-----|----------|-----------|-------------------------------------------|
| Pull-up resistance                    | R <sub>cmd</sub><br>R <sub>dat</sub> | 10  | 100      | kΩ        | to prevent bus floating                   |
| Total bus capacitance for each signal |                                      |     |          |           | 1 card                                    |
| line                                  | CL                                   |     | 40       | pF        | C <sub>HOST</sub> +C <sub>BUS</sub> shall |
| line                                  |                                      |     |          |           | not exceed 30 pF                          |
| Card Capacitance for each signal pin  | C <sub>CARD</sub>                    |     | 10       | pF        |                                           |
| Maximum signal line inductance        |                                      |     | 16       | nH        |                                           |
| Bull up resistance inside card (pin1) |                                      | 10  | 10 90 kΩ | 10        | May be used for card                      |
| Pull-up resistance inside card (pin1) | R <sub>DAT3</sub>                    | 10  |          | detection |                                           |
| Capacity Connected to Power Line      | Cc                                   |     | 5        | uF        | To prevent inrush current                 |

#### 6.3.4 Power Up Time of UHS-I Host

The host needs to keep power line level less than 0.5V and more than 1ms before power ramp up.



#### Power On or Power Cycle

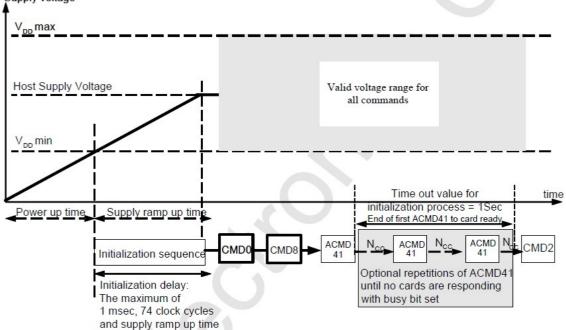
Followings are requirements for Power on and Power cycle to assure a reliable SD Card hard reset.

- (1) Voltage level shall be below 0.5V.
- (2) Duration shall be at least 1ms.

#### **Power Supply Ramp Up**

The power ramp up time is defined from 0.5V threshold level up to the operating supply voltage which is stable between VDD (min.) and VDD (max.) and host can supply SDCLK.

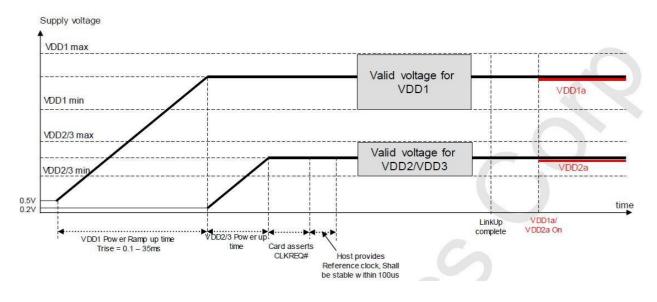
Followings are recommendations of Power ramp up:


- (1) The voltage of power ramp up should be monotonic as much as possible.
- (2) The minimum ramp up time should be 0.1ms.
- (3) The maximum ramp up time should be 35ms for 2.7-3.6V power supply.
- (4) Host shall wait until VDD is stable.
- (5) After 1ms VDD stable time, the host provides at least 74 clocks before issuing the first command.

#### Bosser Proviernd Bossequence of SD Express Host

- (1) Where the hast starts down the payer the part be part by shall be down of the start of the second by the part of the part
- poted shamse Supple and the operating current is drawn through the signal lines.
- (2) If the host needs to change the operating voltage, a power cycle is required. Power cycle means the power is turned off and supplied again. A power cycle is also needed for accessing cards that are already in *Inactive State*. To create a power cycle the host shall follow the power down description before power up the card (i.e. the card V<sub>DD</sub> shall be once lowered to less than 0.5Volt for a minimum period of 1ms).

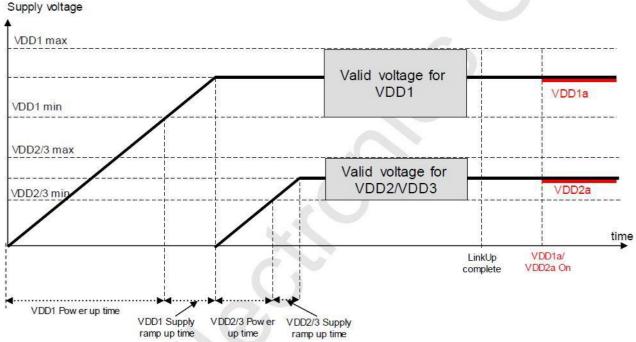
#### 6.3.5 Power Up Time of UHS-I Card


A device shall be ready to accept the first command within 1ms from detecting VDD min. The device may use up to 74 clocks for preparation before receiving the first command.

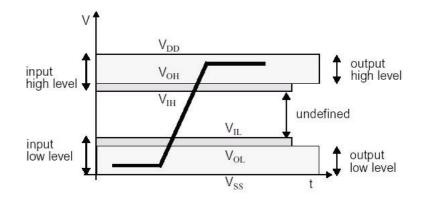


Supply voltage

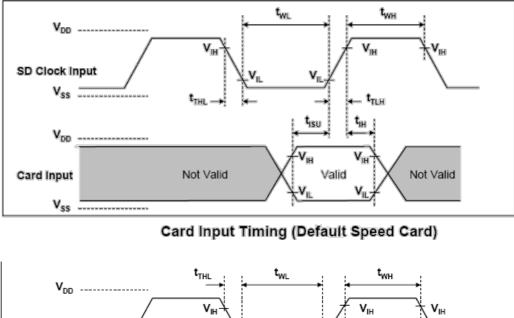
Host is recommended to turn on VDD3 only if SD Express Card type presence detected.

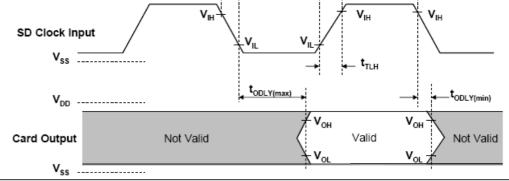

- Trise shall be 0.1-35ms.
- Host shall wait until both VDD1 and VDD2/VDD3 are stable.
- When power cycle is executed, keep VDD1 less than 0.5V and VDD2/VDD3 less than 0.2V at least 1ms before starting power up.




#### 6.3.7 Power Up Sequence of SD Express Card

SD Express card shall support VDD2 (1.8V).


VDD1 shall be supplied first, followed by VDD2 or VDD3 in case that SD Express card presence was detected.

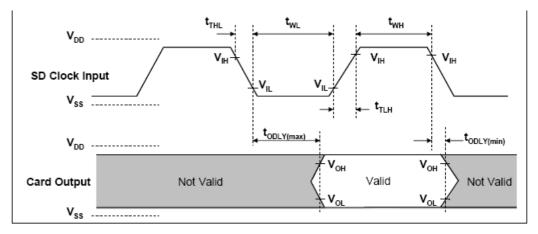



## 6.4 AC Characteristic

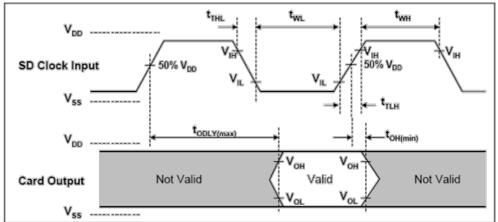


## 6.4.1 microSD Interface Timing (Default)






### Card Output Timing (Default Speed Mode)


| Parameter                                       | Symbol                               | Min          | Max                          | Unit                | Remark                                |  |  |
|-------------------------------------------------|--------------------------------------|--------------|------------------------------|---------------------|---------------------------------------|--|--|
| Clock CLK (All v                                | alues are re                         | ferred to m  | in(V <sub>IH</sub> ) and max | κ(V <sub>IL</sub> ) |                                       |  |  |
| Clock frequency Data Transfer<br>Mode           | f <sub>PP</sub>                      | 0            | 25                           | MHz                 | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Clock frequency Identification<br>Mode          | f <sub>op</sub>                      | 0(1)/100     | 400                          | kHz                 | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Clock low time                                  | t <sub>wL</sub>                      | 10           |                              | ns                  | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Clock high time                                 | t <sub>wн</sub>                      | 10           |                              | ns                  | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Clock rise time                                 | t <sub>τιн</sub>                     |              | 10                           | ns                  | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Clock fall time                                 | t <sub>THL</sub>                     |              | 10                           | ns                  | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Inpu                                            | ts CMD, DA                           | Г (reference | ed to CLK)                   |                     |                                       |  |  |
| Input set-up time                               | t <sub>ISU</sub>                     | 5            |                              | ns                  | C <sub>card</sub> ≤ 10 pF<br>(1 card) |  |  |
| Input hold time                                 | t <sub>ін</sub>                      | 5            |                              | ns                  | C <sub>card</sub> ≤10 pF<br>(1 card)  |  |  |
| Outpu                                           | Outputs CMD, DAT (referenced to CLK) |              |                              |                     |                                       |  |  |
| Output Delay time during Data<br>Transfer Mode  | t <sub>odly</sub>                    | 0            | 14                           | ns                  | C∟≤ 40 pF<br>(1 card)                 |  |  |
| Output Delay time during<br>Identification Mode | t <sub>odly</sub>                    | 0            | 50                           | ns                  | C∟≤ 40 pF<br>(1 card)                 |  |  |

(1) OHz means to stop the clock. The given minimum frequency range is for cases where continuous clock is required.

## 6.4.2 microSD Interface Timing (High-Speed Mode)



Card Output Timing (Default Speed Mode)



Card Output Timing (High Speed Mode)

| Parameter                                          | Symbol            | Min         | Max            | Unit   | Remark                               |
|----------------------------------------------------|-------------------|-------------|----------------|--------|--------------------------------------|
| Clock CLK (All v                                   | alues are re      | ferred to m | nin(V⊮) and ma | x(Vı∟) |                                      |
| Clock frequency Data Transfer<br>Mode              | f <sub>РР</sub>   | 0           | 50             | MHz    | C <sub>card</sub> ≤10 pF<br>(1 card) |
| Clock low time                                     | t <sub>wL</sub>   | 7           |                | ns     | C <sub>card</sub> ≤10 pF<br>(1 card) |
| Clock high time                                    | t <sub>wн</sub>   | 7           |                | ns     | C <sub>card</sub> ≤10 pF<br>(1 card) |
| Clock rise time                                    | $t_{TLH}$         |             | 3              | ns     | C <sub>card</sub> ≤10 pF<br>(1 card) |
| Clock fall time                                    | $t_{\text{THL}}$  |             | 3              | ns     | C <sub>card</sub> ≤10 pF<br>(1 card) |
| Input                                              | ts CMD, DAT       | (reference  | ed to CLK)     | -      |                                      |
| Input set-up time                                  | t <sub>ISU</sub>  | 6           |                | ns     | C <sub>card</sub> ≤10 pF<br>(1 card) |
| Input hold time                                    | t <sub>iH</sub>   | 2           |                | ns     | C <sub>card</sub> ≤10 pF<br>(1 card) |
| Outpu                                              | uts CMD, DA       | T (referenc | ed to CLK)     |        |                                      |
| Output Delay time during Data<br>Transfer Mode     | t <sub>odly</sub> |             | 14             | ns     | C∟≤ 40 pF<br>(1 card)                |
| Output Hold time                                   | t <sub>он</sub>   | 2.5         |                | ns     | C <sub>L</sub> ≥ 15 pF<br>(1 card)   |
| Total System capacitance of each line <sup>1</sup> | CL                |             | 40             | pF     | 1 card                               |

(1) In order to satisfy severe timing, the host shall drive only one card.

# 6.4.3 SD Interface Timing (SDR12, SDR25, SDR50 and SDR104 Modes)

<u>Input</u>

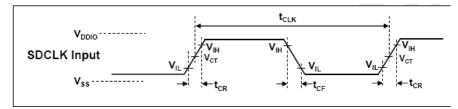
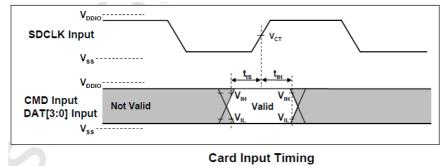
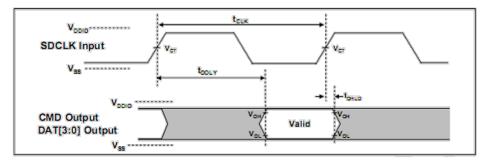
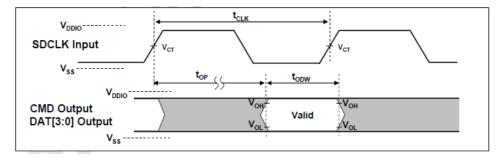




Table 6-8 Clock Signal Timing


| Symbol                            | Min  | Max                   | Unit | Remark                                                                                                                                                                                                                  |
|-----------------------------------|------|-----------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t <sub>CLK</sub>                  | 4.80 | -                     | ns   | 208MHz (Max.), Between rising edge, V <sub>CT</sub> = 0.975V                                                                                                                                                            |
| t <sub>CR</sub> , t <sub>CF</sub> | -    | 0.2* t <sub>ськ</sub> | ns   | $t_{CR}$ , $t_{CF}$ < 0.96ns (max.) at 208MHz, $C_{CARD}$ =10pF<br>$t_{CR}$ , $t_{CF}$ < 2.00ns (max.) at 100MHz, $C_{CARD}$ =10pF<br>The maximum value of $t_{CR}$ , $t_{CF}$ is 10ns regardless of<br>clock frequency |
| Clock Duty                        | 30   | 70                    | %    |                                                                                                                                                                                                                         |

#### SDR12, SDR25, SDR50 and SDR104 Input Timing

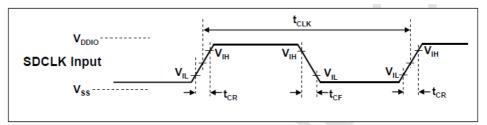



| Symbol          | Min  | Max | Unit | SDR104 Mode                                       |
|-----------------|------|-----|------|---------------------------------------------------|
| t <sub>is</sub> | 1.40 | -   | ns   | C <sub>CARD</sub> =10pF, V <sub>CT</sub> = 0.975V |
| t <sub>ін</sub> | 0.80 | -   | ns   | C <sub>CARD</sub> = 5pF, V <sub>CT</sub> = 0.975V |
| Symbol          | Min  | Max | Unit | SDR12, SDR25 and SDR50 Mode                       |
| t <sub>is</sub> | 3.00 | -   | ns   | C <sub>CARD</sub> =10pF, V <sub>CT</sub> = 0.975V |
| t <sub>IH</sub> | 0.80 | -   | ns   | C <sub>CARD</sub> = 5pF, V <sub>CT</sub> = 0.975V |

### Output(SDR12, SDR25, SDR50)

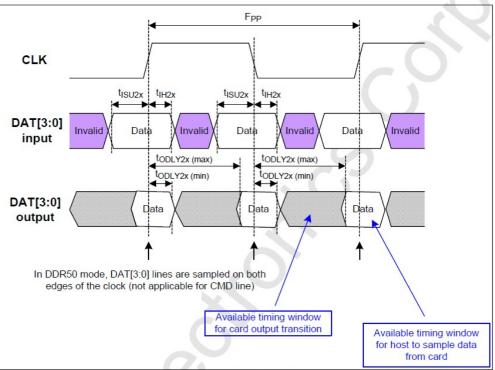


| Symbol          | Min | Max | Unit | Remark                                                                                     |  |
|-----------------|-----|-----|------|--------------------------------------------------------------------------------------------|--|
| todly           | -   | 7.5 | ns   | $t_{CLK}$ >=10.0ns, C <sub>L</sub> =30pF, using driver Type B, for SDR50                   |  |
| todly           | -   | 14  | ns   | t <sub>CLK</sub> >=20.0ns, C <sub>L</sub> =40pF, using driver Type B, for SDR25 and SDR12, |  |
| t <sub>он</sub> | 1.5 | -   | ns   | Hold time at the $t_{ODLY}$ (min.), $C_L$ =15pF                                            |  |


### <u>Output(SDR104 Modes)</u>



### Table 6-10 Output Timing of Variable Window (SDR104)


| Symbol           | Min  | Max   | Unit | Remark                                                |
|------------------|------|-------|------|-------------------------------------------------------|
| t <sub>OP</sub>  | 0    | 2     | UI   | Card Output Phase                                     |
| ∆t <sub>op</sub> | -350 | +1550 | ps   | Delay variable due to temperature change after tuning |
| t <sub>odw</sub> | 0.60 | -     | UI   | t <sub>oDw</sub> = 2.88ns at 208MHz                   |

### 6.4.4 SD Interface Timing (DDR50 Mode)



### **Clock Signal Timing**

| Symbol                            | Min | Max                   | Unit | Remark                                                         |
|-----------------------------------|-----|-----------------------|------|----------------------------------------------------------------|
| t <sub>clk</sub>                  | 20  | -                     | ns   | 50MHz (Max.), Between rising edge                              |
| t <sub>CR</sub> , t <sub>CF</sub> | -   | 0.2* t <sub>CLK</sub> | ns   | $t_{CR}$ , $t_{CF}$ < 4.00ns (max.) at 50MHz, $C_{CARD}$ =10pF |
| Clock Duty                        | 45  | 55                    | %    |                                                                |

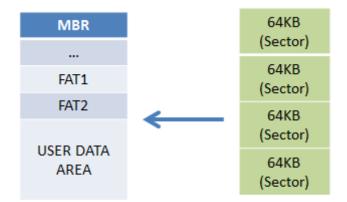


Timing Diagram DAT Inputs/Outputs Referenced to CLK in DDR50 Mode

|                                                | <u> </u>                                                 |             | · · · · · · · · · · · · · · · · · · · |      |                                      |  |  |  |
|------------------------------------------------|----------------------------------------------------------|-------------|---------------------------------------|------|--------------------------------------|--|--|--|
| Parameter                                      | Symbol                                                   | Min         | Max                                   | Unit | Remark                               |  |  |  |
| Input C                                        | MD (referen                                              | ced to CLK  | rising edge)                          |      |                                      |  |  |  |
| Input set-up time                              | t <sub>ISU</sub>                                         | 3           | -                                     | ns   | C <sub>card</sub> ≤10 pF<br>(1 card) |  |  |  |
| Input hold time                                | t <sub>ін</sub>                                          | 0.8         | -                                     | ns   | C <sub>card</sub> ≤10 pF<br>(1 card) |  |  |  |
| Output                                         | CMD (refere                                              | nced to CLM | (rising edge)                         |      |                                      |  |  |  |
| Output Delay time during Data<br>Transfer Mode | todly                                                    |             | 13.7                                  | ns   | C∟≤ 30 pF<br>(1 card)                |  |  |  |
| Output Hold time                               | t <sub>он</sub>                                          | 1.5         | -                                     | ns   | C <sub>L</sub> ≥ 15 pF<br>(1 card)   |  |  |  |
| Inputs DAT (r                                  | eferenced to                                             | CLK rising  | and falling edge                      | es)  |                                      |  |  |  |
| Input set-up time                              | t <sub>ISU2x</sub>                                       | 3           | -                                     | ns   | C <sub>card</sub> ≤10 pF<br>(1 card) |  |  |  |
| Input hold time                                | t <sub>IH2x</sub>                                        | 0.8         | -                                     | ns   | C <sub>card</sub> ≤10 pF<br>(1 card) |  |  |  |
| Outputs DAT (                                  | Outputs DAT (referenced to CLK rising and falling edges) |             |                                       |      |                                      |  |  |  |
| Output Delay time during Data<br>Transfer Mode | t <sub>ODLY2x</sub>                                      | -           | 7.0                                   | ns   | C∟≤ 25 pF<br>(1 card)                |  |  |  |
| Output Hold time                               | t <sub>OH2x</sub>                                        | 1.5         | -                                     | ns   | C∟≥ 15 pF<br>(1 card)                |  |  |  |

#### Table 6-11 Bus Timings – Parameters Values (DDR50 Mode)

# **7 HOST SYSTEM DESIGN GUILDELINES**


### 7.1 Efficient Data Writing to microSD Memory Card

In order to optimize sequential writing performance and WAF (Write Amplification Factor), it is recommended to use allocation unit (AU) writing.

It is recommended that Multiple\_Block\_Write shall be used as a command for writing data, and the size of data written by each command should be the FAT cluster x n (n: integer)

#### 7.1.1 Write\_Single\_Block and Write\_Multiple\_Block

Write single block (CMD24) was written by one sector (512Bytes), which is suitable to write small area such like updating file system area (FAT). Besides, Write multiple blocks (CMD25) is a command for writing data to blocks that have sequential address per command, which is suitable to write large area such as user data. Write multiple blocks with a cluster unit (512Byte x 128 Sectors = 64KByte) in the file system is an efficient access to the flash memory, it is obviously to provide higher speed to compared to single write block. And it could be estimated that microSD card internal process would be reduced to save power consumption and flash write amplification factor, that is why the efficient data writing was recommended. To avoid the command issued by 512Bytes with single write block, software processes in the host device become faster. For this operation, check the sectors in the microSD card and file system as Figure 7-1



Heading address of user data area shall match with the heading of 64KB boundary of SD logical address.

#### Figure 7-1 Matching between logical address and file system

Note: Large Cluster unit is better for performance and WAF, for example, 128KB, 256KB or 512KB. Large cluster unit also can save write command numbers and few transfer time.

## 7.2 Basic Process of Error Handling

#### 7.2.1 Retry Process

Execute the process by sending commands again, especially for signal issue between card and host.

#### 7.2.2 Recovery Process

Confirm card status is in Transfer State, if card status is not in Transfer State, please issue Stop command to recover it and execute or continue flow. If there was UECC during read/write status, we could use recovery process to recover it.

#### 7.2.3 Tuning Write Command Process

In order to adjust Host CMD and CLK timing, the way is issue tuning command to confirm what the device response and data was received by host. Based on the response, host was adjusting the timing step by step and recording the pass range. Through this flow host could adjust the appropriate timing settings to avoid unexpected handshaking issue.

#### 7.2.4 Tuning Read Command Process

In order to adjust Host CLK and DAT timing, the way is issue tuning command to confirm what the device response and data was received by host. Based on the response, host was adjusting the timing step by step and recording the pass range. Through this flow host could adjust the appropriate timing settings to avoid unexpected handshaking issue.

#### 7.2.5 Exception Handling Process

No doubt that sometimes we would face all error handling above could not recover it successfully, and we could react based on the situation.

- If there was error in response, we could re-initialize the card.
- If it was signal issue, we could set up signal status by reading data and tuning command.

### 7.3 Common Error Handling in SPI and SD mode

#### 7.3.1 Time-out

Run the Retry Process. No response from CMD, it might be signal or status got problem. To avoid the infinite loop, implement a retry counter in the host so that, if the retry counter expires, the exception handling starts in the host.

#### 7.3.2 Error Detect (CMD CRC Error)

Run the Recovery Process. If it got second time failure with CRC, the setting might be too margin to receive response stably. Suggestion is use tuning write command to fix timing and then retry it.

#### 7.3.3 Error Detect (Other Error) in SPI and SD mode

Run the Recovery Process.

#### 7.3.4 Others

Most errors could be recovered by running the Recovery Process, let card come into Transfer State and then executing the flow we planned. If it does not work, please use exception method to come back initial state.

## 7.4 Data Error Handling in SPI and SD mode

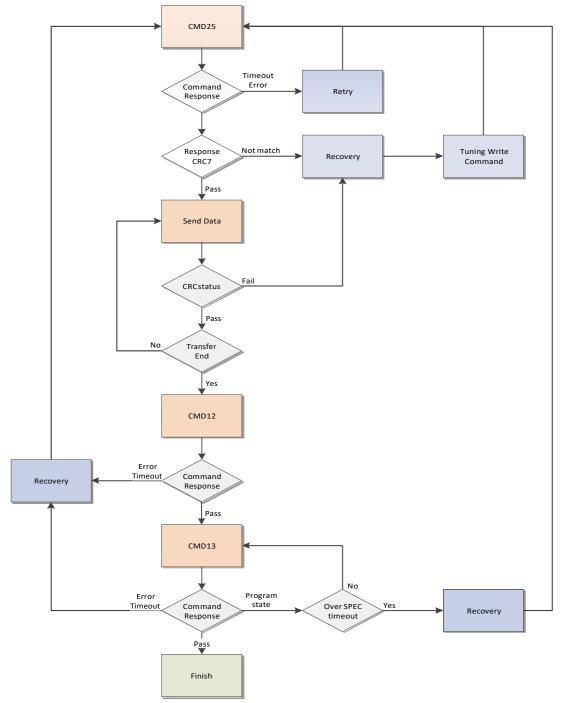
#### 7.4.1 Time-out

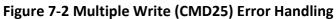
Run the Recovery Process. While the state was recovered, run the flow again.

#### 7.4.2 Read CRC16 Error

Run the Recovery Process. If it got second time failure with CRC, the setting might be too margin to receive data stably. Suggestion is use tuning read date to fix timing and then retry it.

#### 7.4.3 Write CRC Status Error

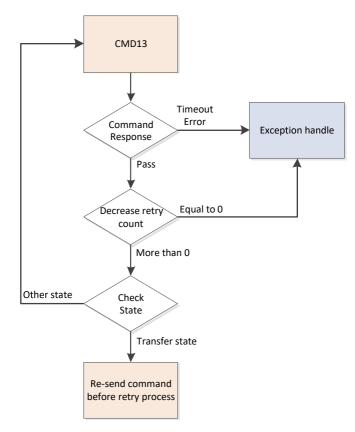

Run the Recovery Process. If it got second time failure with CRC, the setting might be too margin to receive CRC status stably. Suggestion is use tuning read date to fix timing and then retry it.


#### 7.4.4 Others

Most errors could be recovered by running the Recovery Process, let card come into Transfer State and then executing the flow we planned.

## 7.5 Multiple Block Write (CMD25) Process

- If Response is ADDRESS\_OUT\_OF\_RANGE, please confirm writing address.
- If Response is DEVICE\_IS\_LOCKED, please stop writing data.
- If Response is COM\_CRC\_ERROR, run retry or tuning.

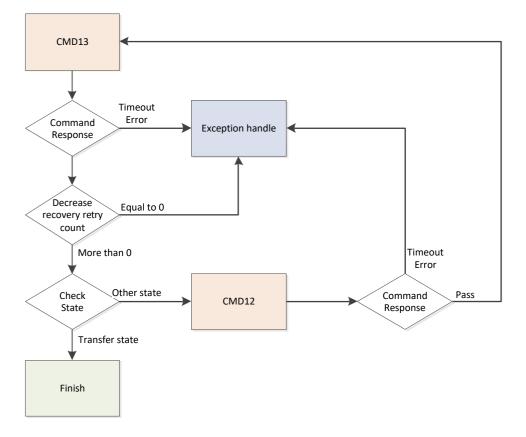





# 7.6 Retry Error handling

In order to avoid signal issue caused unexpected response from device, we could use Retry Process to fix it.

- Please make sure card state is in transfer state before issuing following commands.
- To avoid the infinite loop, implement a retry counter in the host.
- If the device could not respond to CMD13 normally, please runexception handling to recover card status.




**Figure 7-3 Retry Error Handling Process** 

# 7.7 Recovery Error Handling

Sometimes the device failure could not be recovered by Retry Process, it suggests to execute STOP Command (CMD12) to stop whole commands and response and then run following flow.

- Please confirm card status is in Transfer state
- In order to avoid infinite loops, host has to set up a retry counter number.



**Figure 7-4 Recovery Error Handling Process** 

## 7.8 Tuning Write Command Error Handling

Reconfirm the card's pass range, to make sure card could receive host commands.

- If there was no any pass window, it might be connect issue or signal issue
- Pass Range depends on frequency level, higher frequency makes fewer pass range

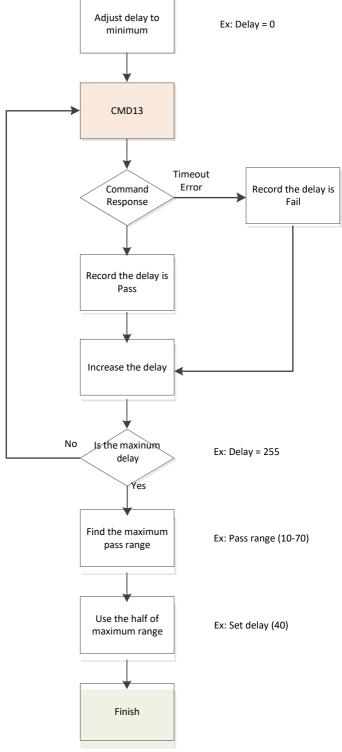



Figure 7-5 Tuning Write Command Error Handling Process

## 7.9 Exception Error Handling

- Error in Card's response or data output time-out, it could re-initialize the card.
- If there was CMD CRC7 issue, it could use tuning write command process to find out appropriate timing.
- If there was DAT CRC16 issue, it could use tuning read command process to find out appropriate timing.

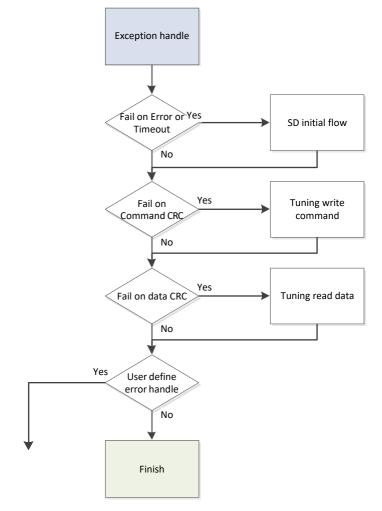



Figure 7-6 Exception Error Handling Process

# 7.10 Multiple Blocks Read (CMD18) Error Handling Process

- If card responded ADDRESS\_OUT\_OF\_Range, please check reading address
- If card responded DEVICE\_IS\_LOCKED, please stop reading data
- If card responded COM\_CRC\_ERROR, run Retry or Tuning Process

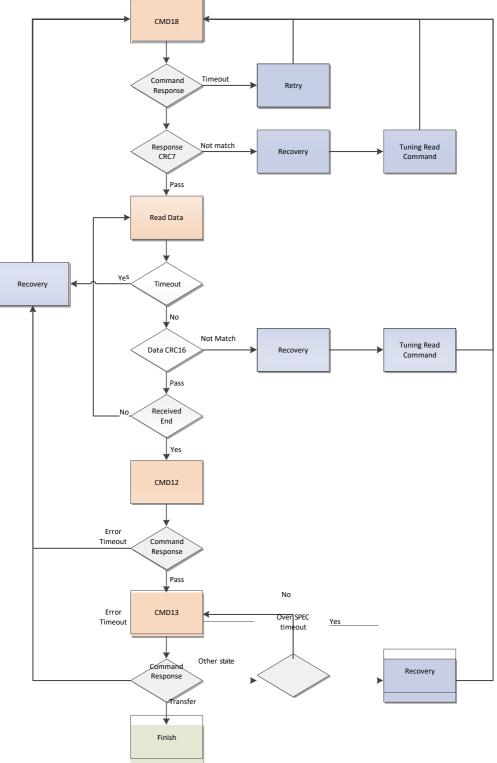



Figure 7-7 Multiple Blocks Read (CMD18) Error Handling Process

## 7.11 Tuning Read Data Error Handling

Reconfirm the card's pass range, to make sure host could receive card's Response and Data.

- If there was no any pass window, it might be connect issue or signal issue
- Pass Range depends on frequency level, higher frequency makes fewer pass range

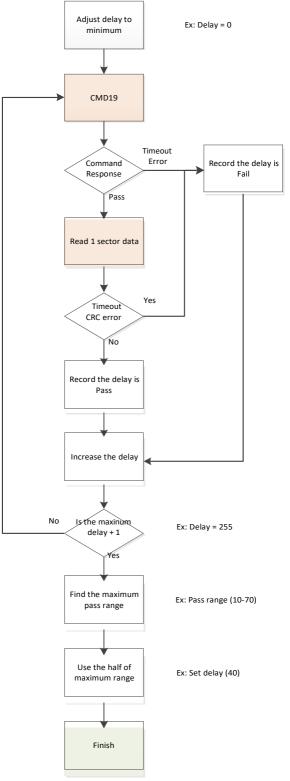



Figure 7-8 Tuning Read Data Error Handling Process

# 7.12 AC Coupling Capacitors Placement of Host side

AC coupling capacitors for PCIe Gen3 is defined 176nF to 265nF. According the SD spec, host side should implement the coupling capacitors of TX side of SD Express card (Rx of host side). The placement shall be as close as possible to the connector and up to 12.5mm from the connector's SD contact pads.

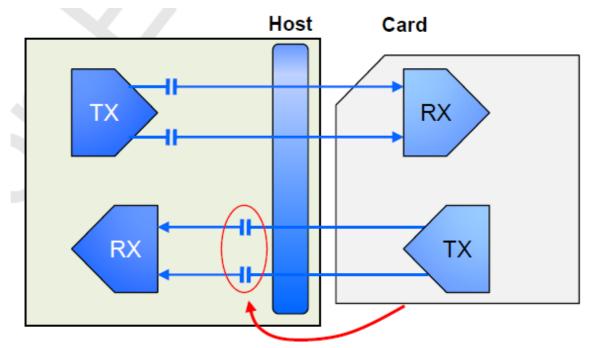
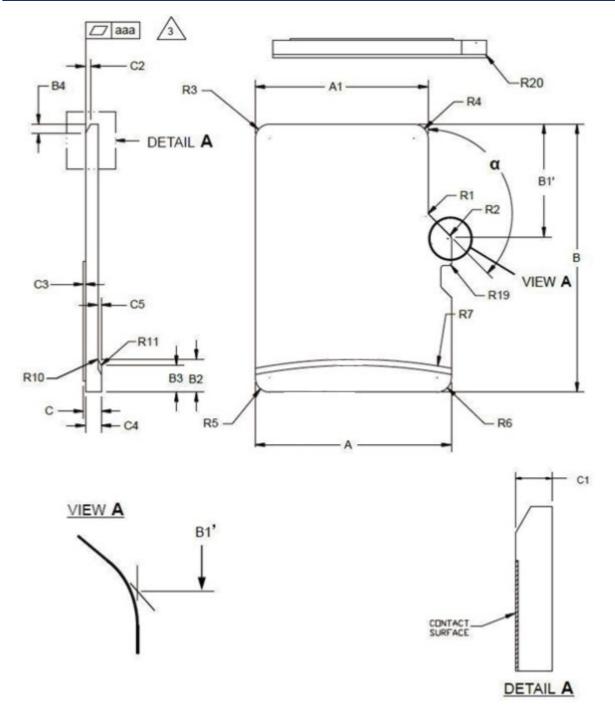
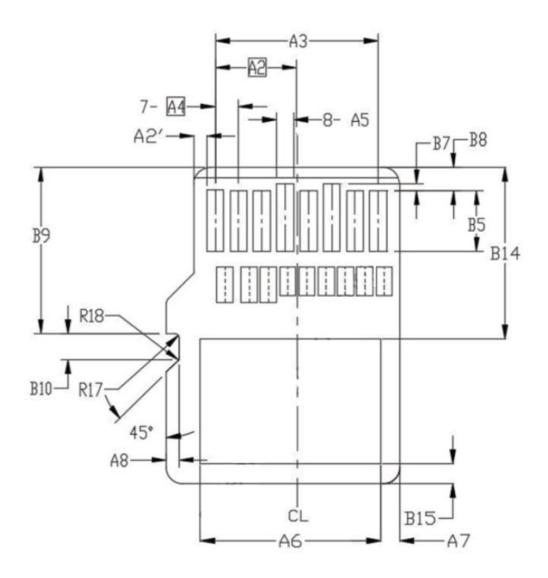


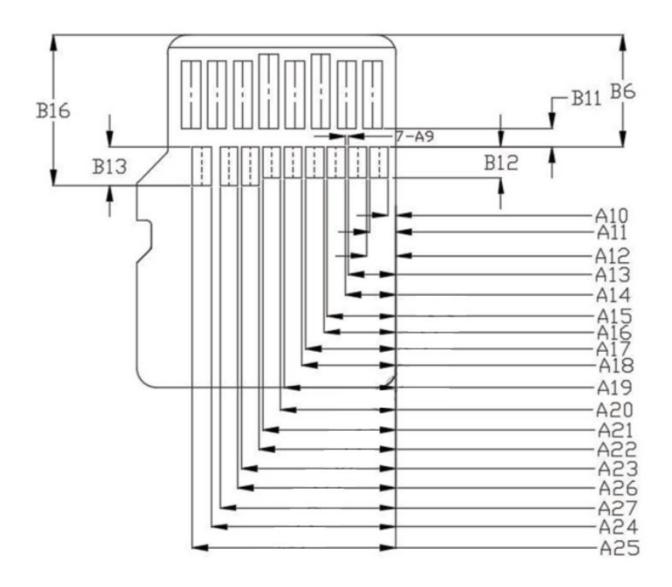

Figure 7-9 Placement of AC coupling capacitors of SD Express host

# 8 REGISTERS

# 8.1 Card Registers


| Name             | Width  | Description                                                                    |
|------------------|--------|--------------------------------------------------------------------------------|
| CID              | 100hi+ | Card identification number; card individual number for identification.         |
| CID              | 128bit | Mandatory                                                                      |
| RCA <sup>1</sup> | 16bit  | Relative card address; local system address of a card, dynamically suggested   |
| RCA              | TODIC  | by the card and approved by the host during initialization. Mandatory          |
| DSR              | 16bit  | Driver Stage Register; to configure the card's output drivers. <b>Optional</b> |
| CSD              | 100hi+ | Card Specific Data; information about the card operation conditions.           |
| CSD              | 128bit | Mandatory                                                                      |
| SCR              | 64bit  | SD Configuration Register; information about the SD Memory Card's Special      |
| SCR              | 04011  | Features capabilities Mandatory                                                |
| OCR              | 32bit  | Operation conditions register. Mandatory.                                      |
| SSR              | F126:+ | SD Status; information about the card proprietary features                     |
| 228              | 512bit | Mandatory                                                                      |
| CCD              | 22b;+  | Card Status; information about the card status                                 |
| CSR              | 32bit  | Mandatory                                                                      |


(1) RCA register is not used (or available) in SPI mode.


# 8.2 SD to NVMe Identification Registers

| Register    | SD         | NVMe mapping<br>(Identify Controller<br>Data Structure) | NVMe Size | Comments                                       |
|-------------|------------|---------------------------------------------------------|-----------|------------------------------------------------|
| MID         | MID        | VID                                                     | 2 bytes   | VID/MID shall identify the same manufacturer   |
| OID         | OID        | SSVID                                                   | 2 bytes   | SSVID/OID shall identify the same manufacturer |
| PNM         | PNM        | MN [0:4]                                                | 40 ASCII  | MN [7:49] is vendor specific                   |
| PRV         | PRV        | FR [0:1]                                                | 8 bytes   | FR [2:7] is vendor specific                    |
| PSN         | PSN        | SN [0:7]                                                | 20 ACSII  |                                                |
| MDT         | MDT        | SN [8:10]                                               |           | SN [11:19] = 0                                 |
| Device Size | CSD/C_SIZE | NCAP                                                    |           | SD/PCIE is same capacity                       |
| SD Version  | SCR        | NM [5:6]                                                |           | MN [5] = major spec.<br>MN [6] = minor spec.   |

# **9 PHYSICAL DIMENSION**







|        |       | MON DIMEN |                   |       |
|--------|-------|-----------|-------------------|-------|
| SYMBOL | MIN   | NOM       | MAX               | NOTE  |
| A      | 10.90 | 11.00     | 11.10             |       |
| A1     | 9.60  | 9.70      | 9.80              |       |
| A2     | 8     | 3.85      | 5 <del>-</del> 27 | BASIC |
| A3     | 7.60  | 7.70      | 7.80              |       |
| A4     | =     | 1.10      | 5 <b>-</b> 23     | BASIC |
| A5     | 0.75  | 0.80      | 0.85              | 3     |
| A6     | - 8   |           | 8.50              |       |
| A7     | 0.90  |           | 450               |       |
| A8     | 0.60  | 0.70      | 0.80              |       |
| A9     | 0.05  | 123 L     | 2                 |       |
| A10    | 0.25  | 0.35      | 0.45              |       |
| A11    | 1.01  | 1.11      | 1.21              | 1     |
| A12    | 1.16  | 1.26      | 1.36              | 1     |
| A13    | 1.92  | 2.02      | 2.12              |       |
| A14    | 2.07  | 2.17      | 2.27              |       |
| A15    | 2.83  | 2.93      | 3.03              | -     |
| A16    | 2.03  | 3.08      | 3.18              | -     |
|        |       |           |                   |       |
| A17    | 3.74  | 3.84      | 3.94              |       |
| A18    | 3.89  | 3.99      | 4.09              |       |
| A19    | 4.65  | 4.75      | 4.85              |       |
| A20    | 4.80  | 4.90      | 5.00              |       |
| A21    | 5.56  | 5.66      | 5.76              |       |
| A22    | 5.71  | 5.81      | 5.91              |       |
| A23    | 6.47  | 6.57      | 6.67              | 8.2   |
| A24    | 7.75  | 7.85      | 7.95              |       |
| A25    | 8.55  | 8.65      | 8.75              |       |
| A26    | 6.62  | 6.72      | 6.82              |       |
| A27    | 7.38  | 7.48      | 7.58              |       |
| A28    | 848   | 2         | 0.50              | 16    |
| A29    | 22    | 1-1       | 0.50              | ()    |
| B      | 14.90 | 15.00     | 15.10             | 01    |
| B1'    | 6.13  | 6.23      | 6.33              | 1     |
| B2     | 1.64  | 1.84      | 2.04              | 41    |
| B3     | 1.30  | 1.50      | 1.70              | ~     |
| B4     | 0.42  | 0.52      | 0.62              |       |
|        |       |           |                   |       |
| B5     | 2.80  | 2.90      | 3.00              |       |
| B6     | -     | 4.75      | 4.85              |       |
| B7     | 0.20  | 0.30      | 0.40              | -     |
| B8     | 1.00  | 1.10      | 1.20              |       |
| B9     | 7.80  | 7.90      | 8.00              | REF   |
| B10    | 1.10  | 1.20      | 1.30              | -     |
| B11    | 120   | 0.75      | 2                 |       |
| B12    | 121   | 1.35      | -                 |       |
| B13    | -     | 1.65      | 12                |       |
| B14    | 9.00  | 1         | 34                |       |
| B15    | 0.10  |           |                   |       |
| B16    | -     | 6.40      | 6.50              | 1     |
| B17    | 11.40 | 11.50     | 11.60             | -     |
| B18    | -     | -         | 0.50              |       |
|        |       |           |                   | +     |
| C      | -     | 1.00      | 1.10              |       |
| C1     | 0.60  | 0.70      | 0.80              | -     |
| C2     | 0.20  | 0.30      | 0.40              |       |
| C3     | 0.00  | 275       | 0.15              | -     |
| C4     | 0.80  | 1-21      | 1.10              |       |

| N | 0 | te | S | : |  |
|---|---|----|---|---|--|
|   |   |    |   |   |  |

- DIMENSIONS and TOLERANCING per ASME Y14.5M-1994.
- 2. Dimensions are in millimeters.
- 3. COPLANARITY is additive to C1 MAX thickness.
- All edges shall not be sharp as tested per UL1439 "Test for Sharpness of Edges on Equipment"
- As B16 is related to connector specification, this length will be defined in next version.

| C5  | 0.15        | 1271  | 1001  |  |
|-----|-------------|-------|-------|--|
| R1  | 0.20        | 0.40  | 0.60  |  |
| R2  | 0.20        | 0.40  | 0.60  |  |
| R3  | 0.70        | 0.80  | 0.90  |  |
| R4  | 0.70        | 0.80  | 0.90  |  |
| R5  | 0.60        | 0.80  | 0.90  |  |
| R6  | 0.60        | 0.80  | 0.90  |  |
| R7  | 29.50       | 30.00 | 30.50 |  |
| R10 |             | 0.20  | -     |  |
| R11 | <u>-</u>    | 0.20  | 5-81  |  |
| R17 | 0.10        | 0.20  | 0.30  |  |
| R18 | 0.20        | 0.40  | 0.60  |  |
| R19 | 0.05        |       | 0.20  |  |
| R20 | $\triangle$ | -     | 0.15  |  |
| α   | 133°        | 135°  | 137°  |  |
| β   | 43°         | 45°   | 47°   |  |
| aaa | -           | -     | 0.10  |  |

# **10 PRODUCT WARRANTY POLICY**

For any other products manufactured and supplied by KODAK ("KODAK Products"), KODAK hereby certify that in the event KODAK Product does not conform to the specification for (A) a period instructed by KODAK or mutually agreed by KODAK and the customer in writing or (B) the period ending on the date at which customer's use of a KODAK Product exceeds KODAK Product's total Terabytes Written as recorded by or derived from KODAK Product's S.M.A.R.T. Attribute, including but not limited to, KODAK Product <sup>\*</sup> s drive life is used up in accordance with the S.M.A.R.T.

Attribute, whichever occurs earlier("Warranty Period") and such inconformity is confirmed by KODAK to be solely attributable to KODAK, KODAK agrees to repair or replace the nonconforming KODAK Product, free of charge.